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Abstract— Distributed optimization has been a significantly
important topic in recent multi-agent networked systems re-
search for a variety of real-life applications. Most of the
previous works are focused on how to find the globally optimal
solution under certain assumptions on the objective functions
as well as the agent interaction characteristics. However, in
many practical problems (specifically, where agents form mul-
tiple sub-groups smaller than the overall multi-agent system
based on commonalities of objective functions or nature of
connectivity), globally optimal solution may not be very useful
and quite difficult to achieve. Achieving multiple local optimal
solutions for different sub-groups may be more useful in these
cases. In this context, this paper presents a new distributed
optimization problem formulation by introducing a modified
cost function involving a parameter that controls the tradeoff
between consensus and disagreement enabling realization of
the entire spectrum of globally optimal solution to multiple
locally optimal solutions. A distributed generalized consensus-
based gradient (DGCG) algorithm is proposed to solve such an
optimization problem for strongly convex objective functions.
We show the convergence analysis of the proposed algorithm
and two illustrative numerical examples for validating the
methodology.

1. INTRODUCTION

Multi-agent networked systems have seen considerable
attention in recent years as they play a critical role in
various application areas such as power network systems,
integrated buildings, transportation networks, and mobile
robotics [1], [2], [3]. Numerous research works on the
(global or local) decision [4], [5], [6], [7], [8], [9] have been
performed for distributed optimization associated with multi-
agent networked systems with a focus on finding the globally
optimal solution. Locally optimal solutions were achieved
for the non-convex optimization problems in a distributed
manner [10], [11], [12], [13]. However, many practical
problems (e.g., distributed resource allocation applications
- building-to-grid control and renewable integration), which
may or may not be convex, may require multiple local
optimal solutions that are useful for local sub-groups of
agents. For instance, consider a large multi-source, multi-
destination supply-demand optimization problem, where the
goal is to find optimal supply rate(s) to satisfy the needs of
the demand side agents. However, the demand side agents
can form multiple distinct sub-groups based on their simi-
larities/differences in requirement and one globally optimal

supply rate may not be useful in order to satisfy drastically
different individual agent needs. Therefore, it may be more
useful to recognize that partition in the overall system and
obtain different optimal supply rates and connect different
supply sources to different ‘groups’ or ‘clusters’ of demand
agents.

In this paper, for addressing such an issue articulated
above, we propose a new problem setup by introducing
the notion of controlling the tradeoff between the level
of consensus and the level of disagreement among agents
in deciding the optimal solution(s). The formulation of
the proposed cost function has notional similarity with the
concept of augmentability [14], [15] where a quadratic
penalty term (also referred to as the consensus term in
literature and used in this paper) is added to the primary
cost term (i.e., summation of local objective functions). Such
a formulation achieves a weighted consensus but not global
variable consensus where a center variable is defined to guide
the local workers [16]. A recent publication [17] reported
a nonconvex decentralized gradient descent for nonconvex
optimization problems in which the authors established a
Lyapunov function to obtain a modified cost function that is
similar to the cost function proposed in this paper. However,
they did not consider the tradeoff between the minimization
of the primary cost term and the consensus among agents.

Contributions: This paper studies the tradeoff between
consensus and disagreement in distributed optimization by
formulating a new problem setup and proposing a distributed
generalized consensus-based gradient (DGCG) algorithm to
solve it. In this paper, we consider a graph describing multi-
ple sub-groups of agents within the overall networked system
and the goal is to obtain different optimal solutions for dif-
ferent sub-groups within the same optimization process. The
graph is represented by an agent interaction matrix (or the
weight matrix) designed for belief exchange among agents
strongly within a sub-group and in a weak manner among the
different sub-groups. We show that with constant step size,
the algorithm can converge with a linear convergence rate for
strongly convex objective functions while the convergence
rate becomes sublinear with diminishing step size.

Outline: The organization of the rest of the paper is as
follows. In section 2, an illustrative example is provided and



then the problem setup is described. While section 3 states
the proposed algorithm, in section 4 we analyze the conver-
gence properties. Section 5 presents two numerical examples
for validating the proposed problem setup and algorithm.
In section 6, the paper is summarized and concluded with
directions for future research.

2. PROBLEM SETUP

This section constructs the proposed problem setup in an
unconstrained distributed optimization setting. We use an
illustrative example to motivate the problem formulation first.

A. Illustrative Example

We consider a typical heating, ventilation, and air-
conditioning (HVAC) system (as shown in Figure 1) involv-
ing an air handling unit (AHU) - variable air volume (VAV)
network. The working mechanism in this networked system
is as follows: the AHU provides supply air (conditioned
air) for each local zone where based on their zone comfort
requirements supply air is reheated in the VAVs before
discharging air to the zones. Typically, supply air temperature
(SAT) is set low (and constant) to satisfy different zone com-
fort requirements resulting in large energy wastage. In [18]
the authors proposed a distributed optimization algorithm to
optimize the energy consumption while maintaining the zone
comfort requirements such that the SAT is not constant but
time-varying given internal and external loads. However, if
the zone requirements are significantly different from each
other, a globally optimal SAT set point solution may not
be ideal. Instead, different ‘groups’ or ‘clusters’ of zones
can be considered with different SAT set points. To realize
that within a single optimization problem, we consider an
underlying graph that strongly connects zones within a
‘cluster’ (e.g., based on energy requirements of the zones)
while connecting different clusters through certain zones
(termed here as ‘gateway agents’) in a much weaker fashion.
The weight matrix of the graph represents the strength of the
connections. Note, we consider that the graph with intended
clusters is static and is provided to the optimization problem.
However, in real applications, this graph can be dynamic in
nature and can be discovered from data during operation.

B. Problem Setup

Motivated by the illustrative example mentioned above,
the proposed problem setup of distributed optimization is
presented in this section. Consider a static undirected graph
G = (V,E), where V is a vertex set (or node set), E is
an edge set. Consequently, if we assume that there exist
N nodes in the networked system, V = {1, 2, ..., N} while
E ⊆ V × V . If (i, j) ∈ E, then agent i can communicate
with agent j. A node i ∈ V has its neighbors Nb(i) ,

{j ∈ V : (i, j) ∈ E}. We assume that the network
G is connected without loss of generality throughout this

paper. We consider a distributed unconstrained optimization
problem on the network, modified from [19]:

min J ,

N∑

i=1

θf i(xi) + (1− θ)
∑

j∈Nb(i)

πij

‖xi − xj‖2

2
(1)

where xi ∈ R
d, f i : R

d → R, i = 1, 2, . . . , N are local
objective functions only known to agents i, θ ∈ (0, 1] is the
control parameter, πij is the ith row and jth column entry of
the weight matrix Π, where Π ∈ R

N×N is a row stochastic
matrix.

Remark 2.1 The problem setup in [16] is discussed below
to compare the similarity of objective functions with the
proposed scheme.

min J ,

N∑

i=1

f i(xi) +
ρ‖xi − x̃‖2

2
(2)

where ρ is a penalty term that can prevent local agents from
being far away from the center variable x̃. The proposed
algorithm in Eq. 1 on the other hand tracks the difference
between an agent and other agents in its neighborhood in
a weighted manner. Another significant difference is that in
the proposed scheme, one can control the level of consensus
among agents while global consensus is the target in the
problem formulation described by Eq. 2.

To compare the proposed problem setup with traditional
constrained optimization problems, we introduce the follow-
ing:

min J ,

N∑

i=1

f i(xi) (3a)

s.t. xi = xj , ∀(i, j) ∈ E (3b)

However, the above problem setup still aims to achieve the
global optimum while being slightly different from the setup
in Eq. 2 in the way that this formulation is leaderless and
depends only on the communication among agents. Further,
by defining a multiplier µ, Eq. 3 becomes equivalent to the
following unconstrained problem:

min J ,

N∑

i=1

f i(xi) + µ
∑

j∈Nb(i)

πij

‖xi − xj‖2

2
(4)

Such a problem setup suggests that tuning the parameter
µ iteratively can result in the final convergence of solution
of Eq. 4 to the solution of Eq. 3. By further replacing µ with
α−1, the problem setup becomes same as the objective func-
tion in [17], which was proposed for solving the nonconvex
optimization problems. Note, this problem still focuses on
achieving single global optimization solution.

Remark 2.2 The proposed problem setup in this paper
uses the parameter θ ∈ (0, 1] that controls the tradeoff
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Fig. 1. A typical AHU-VAV network in a building HVAC system: E1 and
E2 signify the weak connection between different clusters

between achieving individual objectives (i.e., disagreement)
and complete consensus. The objective function is presented
in a decentralized form where consensus can be achieved due
to the second term and control parameter. Note, the second
term in the problem setup is also convex. In the first term, f is
can be convex, possibly Lipschitz continuous or with more
stronger conditions. However, in this paper, only the strongly
convex case is investigated.

3. PROPOSED ALGORITHM

This section mainly presents the proposed algorithm and
necessary assumptions for characterizing the main results in
the next section.

Let

1) x = [x1x2 . . . xN ]T be the states of the agents;
2) f(x) = [f1(x1)f2(x2) . . . fN(xN )]T be the objective

functions;
3) ∇f(x) = [∇f1(x1)∇f2(x2) . . .∇fN (xN )]T be the

gradients of the objective functions.

When d>1, x,∇f(x) are all matrices. For simplicity, in
this paper, we let d = 1. Therefore, Eq. 1 can be equivalent
to the following objective function

J = θ1T
f(x) + (1 − θ)

‖x‖2I−Π

2
(5)

where 1 is row vector with entries being 1, Π is the designed
weight matrix, and ‖ · ‖I−Π denotes the norm with respect
to the PSD matrix I −Π.

Before calculating the gradient of J there are several
generic definitions and assumptions imposed for this paper.

Definition 3.1 (γ-Lipschitz differentiable) A function f is γ-
Lipschitz differentiable if it satisfies the relation for all x, y ∈
R

d, f(y) ≤ f(x) +∇f(x)T (y − x) + γ
2‖y − x‖2.

Definition 3.2 (H-Strongly convex) A function f is H-
strongly convex if it satisfies the relation for all x, y ∈ R

d,
f(y) ≥ f(x) +∇f(x)T (y − x) + H

2 ‖y − x‖2.

Definition 3.3 (Coercivity) A function f is coercive if it
satisfies the following relation f(x) → +∞, ∀‖x‖ → +∞.

Assumption 3.1 Each local cost function f i : R
d →

R ∪ {+∞}, i = 1, 2, . . . , N , is Lipschitz differentiable with
constant γi>0, proper, and coercive.

Assumption 3.2 The weight matrix Π ∈ R
N×N satisfies the

following properties: 1) If i 6= j and (i, j) /∈ E, then πij =
0; 2) the diagonal entries of Π are positive, πii>0 for all i;
3) there is a scalar ǫ>0 such that πij ≥ ǫ whenever πij>0;
4) 1TΠ = 1

T ,Π1 = 1.

Therefore, based on Assumption 3.2, it can be implied that
Π is doubly stochastic.

Assumption 3.3 (Gradient Upper Bound) ∇f(x) is
bounded above by some constant C>0, i.e., ‖∇f(x)‖ ≤ C.

The algorithm distributed generalized consensus-based gra-
dient (DGCG) for solving Eq. 1 is proposed as follows:

xk+1 = xk − αk (θ∇f(xk) + (1− θ)(I −Π)xk)
︸ ︷︷ ︸

∇J(xk)

(6)

where αk is the step size.
We also consider the following momentum variant of the

proposed algorithm to improve the convergence rate. In that
case, we have

xk+1 = xk−αk(θ∇f(xk)+(1−θ)(I−Π)xk)+η(xk−xk−1)
(7)

In this study, η is selected as 0.95.

Remark 3.1 The proposed algorithm shows that in contrast
with the regular gradient-based methods [20], J(xk) is
a linear combination of ∇f(xk) and (I − Π)xk using a
parameter θ. Different θ values control the tradeoff between
consensus and disagreement among local agents. When the
weight matrix is uniform corresponding to a fully connected
graph, small θ results in global optimum. On the other
hand, a non-uniform weight matrix may lead to a “clustering
phenomena”, i.e., consensus among agents with high weight
connection among themselves, while achieving disagreement
among agents loosely or not connected.

As f i are assumed to be Lipschitz differentiable, then it
is obtained that

∑N
i=1 f

i(xi) is γm = maxi=1,2,...,N{γi}-
Lipschitz differentiable while similarly being Hm =
mini=1,2,...,N{Hi}-strongly convex when they are strongly
convex. Therefore, for the new objective fucntion J, it is
γ̂-Lipschitz differentiable for γ̂ = θγm + (1 − θ)(1 − λN )
and Ĥ = θHm + 1

2 (1− θ)(1− λ2) in strongly convex case,
where λ2 and λN are second and N th largest eigenvalues,
respectively. Let γm>Hm such that γ̂>Ĥ.
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4. MAIN RESULTS

This section presents results obtained by using DGCG
for the strongly convex case. The initial state is set to 0
throughout the analysis.

A proposition for consensus estimate is first stated to
guarantee the convergence for global or clustering optimum
scenarios with certain construction of weight matrices.

Proposition 4.1 (Consensus Estimate) Let Assump-
tions 3.1, 3.2, and 3.3 hold. For all k ∈ N, when αk ≤ 1

γ̂

the iterates {xk} generated by (6) satisfy the following
relation

‖xk − 1sk‖ ≤ θC

k−1∑

l=1

αlβ
k−1−l (8)

where sk = 1
N

∑N
i=1 x

i
k, β<1, B = (1 − θ)(I −Π).

Remark 4.1 When the step size is constant, we have that for
k → ∞, ‖xk−1sk‖ ≤ αθC

1−β
. Although this upper bound may

not be too tight, this relationship shows that it is proportional
to the step size α, the control parameter θ, and the constant
C . However, when θ = 1, the agents settle to states that
optimize their individual objective functions. On the other
hand, when θ → 0, all the agents (irrespective of the
connectivity of Π, where λ2(Π)<1) achieve consensus over
their states. As θ is slowly reduced from 1 to 0, the agents
that have connections with higher weights among themselves
(i.e., form a ‘group’ or ‘cluster’), achieve consensus within
their groups. As θ is further reduced, these groups merge,
forming larger groups. The grouping phenomena at given
value of θ is also dependent on the similarity of the individual
agents’ objective functions in addition to the interagent
connectivity. When the step size is diminishing, consensus
can be eventually achieved with infinite number of iterations.
However, θ is an important control parameter to control the
consensus levels in both constant and diminishing step sizes.
Appropriately chosen θ is able to speed up the convergence
rate.

Based on the definition of strong convexity, it suggests
the unique optimizer and a relation between gradient and
function value, namely, 2Ĥ(J(x)−J

∗) ≤ ‖∇J(x)‖2 for all
x ∈ R

N , where J
∗ = J(x∗), where x

∗ is the optimizer. A
key lemma is stated as follows to characterize main results.

Lemma 4.1 Let Assumptions 3.1 and 3.2 hold. For all k,
the iterates {xk} generated by (6) satisfy

J(xk+1)− J(xk) ≤ −(1−
γ̂αk

2
)αk‖∇J(xk)‖

2 (9)

This lemma states that when the objective function J is
Lipschitz differentiable, under Assumptions 3.1 and 3.2, it
can have sufficient descent within the function value when
the step size can satisfy the certain condition, which is stated
in the following.

With this relation in hand, we are ready to state the
following proposition.

Proposition 4.2 Let Assumptions 3.1 and 3.2 hold. For all k,
when the step size αk = α ≤ 1

γ̂
, the iterates {xk} generated

by (6) satisfy

J(xk)− J
∗ ≤ (1− αĤ)k−1(J(x1)− J

∗), (10)

which shows that the function value converges to the optimal
value with a linear convergence rate.

Remark 4.2 As γm>Hm, then γ̂>Ĥ . Under this condition,
it can be obtained that 1 − αĤ<1. This proposition has
a good consequence that when the objective functions are
strongly convex and the constant step size satisfies a certain
condition, the proposed algorithm has a linear convergence
rate. It should be noted that the linear convergence rate is a
standard result for the centralized gradient descent method
when the objective function is Lipschitz differentiable and
strongly convex with a sufficiently small step size.

Next we discuss the strongly convex case with diminishing
step size, which satisfies that limk→∞ αk = 0,

∑∞

k=0 αk =
∞.

Proposition 4.3 Let Assumptions 3.1 and 3.2 hold. Suppose
that αk = 1

k+w
, w>0 such that α1 ≤ 1

γ̂
. Then for all k, the

iterates {xk} generated by (6) satisfy

J(xk)− J
∗ ≤

k−1∏

l=1

(1− αlĤ)(J(x1)− J
∗), (11)

which shows that the function value converges to the optimal
value with a sublinear convergence rate when k → ∞.

Remark 4.3 Similarly, based on Remark 4.2, it can be
obtained that 1−αkĤ<1. Proposition 4.3 shows that when
k approaches infinity, the function value converges to the
optimal value and the convergence rate is sublinear.

5. NUMERICAL EXAMPLE

For validating the proposed problem setup and algorithm,
we use an agent-based building case in the context of
optimizing the supply air temperature (SAT) for minimizing
energy consumption in a building consisting of 10 zones
(agents). In this problem, a general heating, ventilation, and
air-conditioning (HVAC) system associated with a building
is investigated. Interested readers can see [21] for further
details. Each agent consumes cooling energy and reheat
energy and for simplicity, each energy consumption function
is assumed to be quadratic for strongly convex case. The
energy consumption for each zone is Ei = c(TMA −
TSA)

2+h(TDA,i−TSA)
2, where c is the cooling coefficient,

TMA is the mixing air temperature, TSA is the supply air

4
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Fig. 2. Fully connected graph, strongly convex case:(a) Convergence rates
with different θ when α = 0.01 (b) Convergence rates with different θ when
step size is diminishing
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temperature, TDA,i is the ith zone discharge air temperature,
h is the heating coefficient.

We first consider the fully connected graph case where
each agent communicates with every other agent. Figure 2
shows the convergence of function value sequences for the
strongly convex case. The results validate the analytical
convergence analysis as the convergence rate is observed to
be linear when the step size is constant while sublinear for
the diminishing step size. Moreover, larger θ value results in
better accuracy and faster convergence as the cost function
J has less emphasis on consensus, which is reflected in the
optimized variable convergence shown in Fig. 3.

A non-fully connected graph is used to validate the ‘clus-
tering’ phenomenon of the proposed methodology. Figure 4
shows the non-fully connected graph considered here with 3
clusters and one agent of each cluster (red color) is selected
to be the gateway agent to communicate with other clusters.
In this scenario, we consider that zones in the same cluster
have similar or the same comfort requirements. As shown in
Fig. 5, observations still imply the linear convergence rate
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Fig. 4. Non-fully connected graph with 3 clusters
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Fig. 5. Non-fully connected graph, strongly convex case:(a) Convergence
rates with different θ when α = 0.007 (b) Convergence rates with different
θ when step size is diminishing

for constant step size and sublinear convergence rate for di-
minishing step size. With the designed state transition matrix,
Fig. 6 shows the clustering phenomenon. In this case, smaller
θ (that generally implies high degree of consensus) shows
clear ‘clustering’ optimal values where individual cluster
agents converge. On the other hand, for larger θ, while the
convergence is faster, the ‘clustering’ phenomenon is slightly
less pronounced. From the above simulation results, we show
the effectiveness of the proposed problem formulation and
algorithm.

Figure 7 shows the comparison of algorithm performance
between DGCG and momentum variant of DGCG. From the
result, it can be observed that DGCG performs the worst
with diminishing step size but without any momentum. The
best performance comes with constant step size with the
momentum term. The approach with diminishing step size
and momentum term outperforms the approach with only
constant step size at the beginning. However, after around
600 iterations, the opposite phenomenon can be observed as
the diminishing step size becomes significantly smaller than
the constant step size.
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Fig. 6. Non-fully connected graph, strongly convex case:(a) optimization
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Fig. 7. Comparison of performance between DGCG and momentum variant
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6. CONCLUSIONS AND FUTURE WORK

This paper presents a new distributed optimization prob-
lem formulation by introducing the notion of controlling
the tradeoff between consensus and disagreement among
agents during a distributed optimization process. Conver-
gence analysis for the strongly convex objective function
case is presented to show the spectrum from global to
locally optimal solutions. The strongly convex case has
linear convergence rate with constant step size and sublinear
convergence rate with diminishing step size. Two numerical
scenarios corresponding to a fully connected graph and a
non-fully connected graph based on commercial building
HVAC systems are used for validation. Beyond the results
reported in this work, several future research directions
include: (1) non-strongly convex case study with the current
problem setup; (2) analysis of relations among step size,
control parameter, and weight matrix; (3) study nonconvex
and/or nonsmooth objective functions in the present context.
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