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Abstract— Numerous studies on non-intrusive load monitor-
ing (NILM) of electrical demand have been performed for the
purpose of identifying load components only using univariate
data, such as the identification of a certain type of end-use (e.g.,
lighting load) via whole building electricity consumption time
series. However, additional time series data may become useful
in providing distinguishable features for energy disaggregation
which can be rendered as a multivariate time series data analy-
sis problem. This paper presents a novel probabilistic graphical
modeling approach called the spatiotemporal pattern network
(STPN) for addressing such problem of pattern extraction
from multivariate time-series data with application to building
energy disaggregation. The proposed scheme shows promise
in dealing with multivariate time-series with widely different
characteristics for the improvement in energy disaggregation
performance. We use multiple real data sets to validate the
STPN framework along with performance comparison with
the state-of-the-art techniques such as factorial hidden Markov
models (FHMM) and combinatorial optimization (CO).

1. INTRODUCTION

Non-intrusive load monitoring is a well studied prob-
lem involving disaggregation of the total electrical energy
consumption of a building into its constituent electric load
components without the need for extensive metering installa-
tions on individual end-uses. Such problems are relevant and
challenging from the perspective of software-based detection
for control of end-use patterns as well as the future internet
of things (IoT). [1] presented an overview of load disaggre-
gation concepts which began from the pioneering disaggrega-
tion technique in [1] that detected sharp changes in signals
to optimization of error terms for pattern detection using
genetic algorithms [2]. In [3], Fourier transforms was used to
categorize the useful patterns of end-use signals. Moreover,
authors in [3] evaluated the performance of factorial hidden
Markov models (FHMM)[4] for the energy disaggregation
problem. With the importance of NILM, arose the need for
standardized datasets for benchmarking the large variety of
published algorithms. In that light, authors of [5] established
accordingly the Reference Energy Disaggregation Data set
(REDD), facilitated by hardware and software systems de-
signed to collect real and reactive power of appliances from
multiple homes in Boston, MA in 2011. NILMTK, an open

source toolkit was subsequently developed [6] as a common
platform to enhance the reproducibility of the algorithms’
results on available datasets such as REDD [5], BLUED
[7], Smart* [8], and several others. In order to benchmark
the results of the algorithms, several performance evaluation
metrics were proposed [9], [10], [11]. Previous work on
NILM for energy disaggregation has been primarily based
on univariate real power measurements at different sampling
intervals [12], [13], [14], [15], [16], [17], [18]. However, a
univariate measurement is possibly insufficient for the task
of identifying the dominant load contributions such as air-
conditioning related demand.

In this context, a recently developed framework of spa-
tiotemporal pattern networks (STPN) that is built on the
concept of symbolic dynamics is applied to NILM. STPN
is proposed to model multivariate time series, via learn-
ing atomic patterns (APs, Markov models for individual
variables) and relational patterns (RPs, Markov models to
model causal interactions between variables) [19], [20], [21].
Patterns of multivariate time series data are formed based on
these features (APs and RPs) and then used to study the
characteristics of electricity usage. This paper also applies
a mutual information based metric to explore the energy
consumption patterns and selects the most valuable variables
for disaggregation. Diverse test cases are used for validation
showing that it outperforms the state-of-the-art techniques in
NILM.

Outline: The remaining paper is organized as follows.
Section 2 provides a brief background and preliminaries of
STPN. Section 3 presents the framework of energy disaggre-
gation using multivariate time-series data via STPN. Section
4 describes results for disaggregation using RBSAM data set.
Finally, the paper is summarized and concluded in Section
5.

2. BACKGROUND ON SPATIOTEMPORAL PATTERN

NETWORK (STPN)

This section presents the background and some preliminar-
ies on STPN for characterizing the proposed methodology.
Before introducing STPN, the concept of probabilistic finite



state automaton (PFSA) is first defined here as a basis.
PFSA is defined in the symbolic space that is generated
via time series abstraction (preprocessing and discretiza-
tion/partitioning). As shown in Fig. 1, the time-series data is
discretized into symbol sequences and then state sequences,
PFSA is formed using D-Markov machine. More formally,
based on a deterministic finite state automaton (DFSA) D =
(S,Q, χ), a PFSA, an extension to probabilistic setting from
DFSA is defined as a pair P = (D, ψ), i.e., the PFSA is a
4-tuple P = (S,Q, χ, ψ), where:

1) S is a set of finite size for the symbol alphabet and
S 6= ∅;

2) Q is a set of finite size for states and Q 6= ∅;
3) χ : Q× S → Q is the mapping for state transition;
4) ψ : Q × S → [0, 1] is defined as a symbol generation

function, i.e., probability morph function which is such
that

∑

σ∈S ψ(q, σ) = 1 ∀q ∈ Q, where pij indicates
the probability of the symbol σj ∈ S occurring with
the state qi ∈ Q.
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Fig. 1. Steps to form a PFSA model with time-series data

Using the xD-Markov machine defined in [22], a PFSA
can be used to explore the relationship of two time-series
data as shown in Fig. 2. Let the symbolic system a represent
a measurement at the aggregate side (metering data) and
symbolic system b represent an end-use i (sub-metering
data), the transition matrix Ωab (relational pattern, RP) is
used to characterize features in the total energy consumption
due to the end-use i. Atomic pattern (AP) is also shown here
that is used to capture the predictability of end-use i based on
its past measurements. The metric Λab for the patterns (APs
and RPs) is used to evaluate the importance of the patterns.
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Fig. 2. Extraction of atomic patterns and relational patterns (with D-
Markov machine and xD-Markov machine respectively and D = 1 for
simplicity, i.e., states and symbols are equivalent) to model individual
variables and interaction among different variables respectively.

With the description of PFSA, D-Markov machine, and
xD-Markov machine [23], STPN is defined in as follows[20].

Definition. A PFSA based STPN is a 4-tuple WD ≡
(Qa,Σb,Ωab,Λab): (a, b denote nodes of the STPN) (a)

1) Qa = {q1, q2, · · · , q|Qa|} is the state set corresponding
to symbol sequences Sa;

2) Σb = {σ0, · · · , σ|Σb|−1} is the alphabet set of symbol
sequence Sb;

3) Ωab is the symbol generation matrix of size |Qa|×|Σb|,
the ijth element of Πab denotes the probability of
finding the symbol σj in the symbol string sb while
making a transition from the state qi in the symbol
sequence Sa; while self-symbol generation matrices
are called atomic patterns (APs) i.e., when a = b,
cross-symbol generation matrices are called relational
patterns (RPs) i.e., when a 6= b.

4) Λab denotes a metric that can represent the importance
of the learnt pattern for a → b which is a function of
Πab.

3. STPN FRAMEWORK FOR NILM WITH MULTIVARIATE

MEASUREMENTS

While the previous section applies STPN in exploring
patterns in different end-uses, here we introduce the STPN
framework for energy disaggregation using multivariate time-
series data. Let us denote X = {XA(t), t ∈ N, A =
1, 2, · · · , f} for both kinds of multivariate time-series data
in a home, and Y = {Y B(t), t ∈ N, B = 1, 2, · · · , g} for the
power consumption for the end-uses. f is the number of time
series at the aggregate side, g is the number of end-uses.

For the time-series X and Y, symbol sequences σσσ =
{σA(t)} and τττ = {τB(t)} can be obtained after data process-
ing and partitioning. To form an STPN for disaggregation,
joint symbol sequences σJ = σ1(t) ⊕ · · · ⊕ σf (t) and
τJ = τ1(t) ⊕ · · · ⊕ τg(t) are formed based on the symbol
sequences σσσ and τττ respectively. Note, the joint symbol space
is generated via the direct sum of the individual symbol
spaces. For example, the direct sum σa ⊕ σb defines the
product space of σa and σb. Here, we use the depth D = 1,
which means the symbol and the state are equivalent. Then
we can have the state sequences Φ and Ψ generated from
the joint symbols sequences respectively.

With the setup, the learning stage of STPN is to compute
the transition matrix ΩΩΩ(Φ, τJτJτJ ) from the states in Φ to the
symbols in τJτJτJ using a frequentist’s approach (e.g. counting
the number of occurrences). For example, the probability
of the state Φm to the symbol τJn can be computed by
Pr(φm, τ

J
n ) = Nmn/Nm, where Nmn is the number of

times that the symbol τJn ∈ τJτJτJ is emanated after the state
φm ∈ Φ, i.e.,

Nmn , |{(φ(k), τJ (k + 1)) : τJ (k + 1) = τJn | φ(k) = φm}|,

m = 1, 2, · · · ,

f
∏

A=1

|σA|, n = 1, 2, · · · ,

g
∏

B=1

|τB|,

(1)

where φ(k) is the kth state in the state sequence Φ and
τJ (k + 1) is the (k + 1)th symbol in the symbol sequence
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τJτJτJ . The time lag equals to 1 in this case, and Nm ,
∑

∏g

B=1
|τB|

n=1 Nmn.
The real values represented by the symbols τJτJτJ can be also

computed from the training data, and noted as E
(

Y|τJ =
n
)

, n = 1, 2, · · · ,
∏g

B=1 |τ
B|. In the disaggregation stage,

only the time-series X̃ is known, the time-series of end-
uses Ỹ is assumed unknown and used for testing. Similarly,
the symbol sequences σ̃σσ and joint symbol sequence σJ

are obtained after partitioning, and the corresponding state
sequences are generated using D-Markov and xD-Markov
machines. Then the power consumptions of the end-uses Ys

are obtained, Ys =
∑

∏g

B=1
|τB|

n=1 Pr(τJ |φ̃(t)) ·E
(

Y|τJ = n
)

.
With multivariate time-series data, the disaggregation

formed in this work is noted as the STPN framework, as
shown in Fig. 3. When there is only one time-series at the
aggregate side (usually the total energy consumption), it is
a one-to-one relationship between the total energy consump-
tion, we note it as the PFSA approach, which follows the
definition in Section 2.

Multivariate time series

...
...

...

X1

…

X1    à Y1

(head) (tail)

X2

Xm

Y1

…

Y2

Yn

Measurements End-uses X1

Xm

Y1

X1

Xm Yn

STPN for Y1

STPN for Yn

Information 

based metric

…

X1

…

X2

Xm

Y1
…

Y2

Yn

STPN

PFSA

X2

parallel

Fig. 3. Formulation of STPN for NILM with multivariate measurements
[24]. The multivariate time-series (measurement–Vi and end-use–Aj ) are
represented as nodes in a graphical model (shown in the top panel), the
ability of predicting the end-use from each measurement is estimated via
information based metric (e.g., mutual information) based on the formulation
of PFSA in Section 2 and Fig. 1. The selected time-series are used in
the STPN model (shown in the bottom panel) to learn the disaggregation
model. The STPN can be implemented in a parallel manner to improve
computational efficiency (shown in the bottom-right panel) where an STPN
is formed for the disaggregation of one end-use.

It should be noted that, increasing the number of symbols
during partitioning will preserve the more information for
disaggregation. However, the larger number of symbols will
significantly increase the dimension of the transition matrix,
and hence cause difficulty in stability of model learning.
Also, due to the use of joint states, the number of states will
surge when several variables are considered. A state merging
approach is introduced to avoid the above issues. To imple-
ment the state merging, states that are less informative are
first identified. The metric γ(r) to evaluate the importance

of the state is defined as,

γ(r) =
∣

∣

∣

∣Pr(φr , τ
J
n )− Pr(φr , τ

J )
∣

∣

∣

∣

1
, r = 1, 2, · · · ,

f
∏

A=1

|σA|

(2)

where

Pr(φr, τ
J ) =

∏g

A=1
|τA|

∑

n=1

Pr(φr , τ
J
n )/

g
∏

B=1

|τB|

If γ(r) < η where η is a specified threshold, the state φr
is identified to be merged to other states. Then the relevance
Γ(r, s) of the two sates is defined as,

Γ(r, s) =

∏g

B=1
|τB|

∑

n=1

∣

∣

∣

∣Pr(φr , τ
J
n )− Pr(φs, τ

J
n )

∣

∣

∣

∣

1
,

r, s = 1, 2, · · · ,

f
∏

A=1

|σA|

(3)

Γ(r, s) can be applied to find out the closest state φs to
be merged, where γ(s) ≥ η . Also, we can have the states
that Γ(r, s) < D to be merged, where the φr and φs are the
states with very similar transition probabilities, here D is a
specified threshold.

For the end-uses, it can include all of them in one STPN
model or several of them which have strong dependency.
Also, it can be used for one-by-one disaggregation, where
each STPN model is learnt to predict one end-use. If all
end-uses are included in the model, the learning process
automatically preserves the property such that the sum of
the end-use power is equal to the total power consumption.
However, when there is a large number of end-uses, the
learning process may become computationally expensive.

For the number of multivariate time-series (X) at the
aggregate side, tens of variables may be available in different
scenarios. The more variables used, the more information is
included in the model, while the computational cost is also
increased. Here, a mutual information based metric is applied
to select the most valuable variable. Xu is the variables
that are currently included in STPN, and X \ Xu are the
candidates can be added into STPN model, the most valuable
variable Xe is determined by that the added time-series has
the maximal mutual information among all the candidates.

Xe = argmax{Λ(Xu∪Xe)→Y }, Xe ∈ X \ Xu (4)

where Λ(Xu∪Xe)→Y is the mutual information metric of the
pattern (Xu ∪Xe) → Y –from the aggregate side (with the
newly added variableXe) to the end-use(s).

4. CASE STUDY USING MIXED TYPES OF DATA IN

RBSAM DATA SET

1) Data set and problem setup: The Residential Building
Stock Assessment data set is collected based on a field
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study by Pacific Northwest National Laboratory (PNNL) and
Northwest Energy Efficiency Alliance (NEEA) in 2013 [25],
[26]. RBSA electric consumption data is based on field data
from a representative random sample of existing homes,
which encompasses 28-months of 15-minute observations
within single-family homes in the Pacific Northwest United
States [27].

In addition to whole building electricity use, there are
typically 25 sub-metered loads per home including various
types of heating, ventilating and air conditioning (HVAC)
systems, appliances, lighting, entertainment, home office
and plug loads. The Northwest had no precedence for a
residential field study of this size and nature of the RBSA,
and it was thus a new standard for residential characterization
studies in the Northwest. The 2009 International Energy
Conservation Code classifies RBSA metered homes in IECC
Climate Zones 4, 5, and 6.

In addition to the measured variables, moving average of
the whole building electric (WBE) and time of day (ToD)
are also used.

During the training, the sub-metered data for each end-
use is applied to learn the transition probabilities between the
multivariate time-series data. The information based metric is
used to select the candidates for disaggregation. The WBE is
always used, while the others are chosen by the information
based metric. The time periods for training and test are 21
days (e.g. Jun. 1–Jun. 21, 2012, Mar. 1–Mar. 21, 2013) and
7 days (e.g. Jun. 22–Jun. 28, 2012, Mar. 22–Mar. 28, 2013),
respectively.

Comparison approaches. Factorial Hidden Markov
Model: Factorial Hidden Markov Model (FHMM) [4] is
an extension of Hidden Markov Models that parallelizes
multiple Markov models in a distributed manner, and per-
forms some task–related inference to arrive at predicted
observation. The application of such models is done by
representing each end–use as a hidden state that is modeled
by multinomial distribution using K discrete values, and then
sum each appliance meter’s individual independent contri-
bution to the expected observation (i.e., the total expected
main meter value). AFAMAP [9] variant of FHMM which
includes the trends in the hidden states of FHMM has also
been reported to be effective in the disaggregation task. In
our application of FHMM, the number of hidden states is
the number of testing appliances, while K = 3 in order to
keep the computational requirements low.

Combinatorial Optimization: Combinatorial optimiza-
tion (CO) [28] algorithm is a heuristic scheme that attempts
to minimize the ℓ1–norm of the total power at the mains and
the sum of the power of the end–uses, given either single or
multi–state formulation of the sum. The drawbacks of CO
for disaggregation tasks are its sensitivity to transients and
degradation with increasing number of devices or similarity
in device characteristics.

Metrics for evaluating performance: Here, metrics to

evaluate the disaggregation performance in different aspects
are applied including root mean square error (RMSE), aggre-
gation error (AE), normalized disaggregation error (NDE).

RMSE for ith end-use is defined as,
∑T

t=1

√

(ŷit − yit)
2,

where ŷit is the prediction for the ith end-use at tth time step,
yit is the ground truth for the ith end-use at tth time step.

AE for the ith end-use is defined as (SAE in [12]), AE =
|
∑T

t=1
ŷi
t−

∑T
t=1

yi
t|∑

T
t=1

yi
t

. AE reflects the error of the algorithm
in predict the total energy consumption of each end-use
in a period of time. NDE for ith end-use is defined as

[12], NDE =
∑

T
t=1

(ŷi
t−yi

t)
2

∑
T
t=1

(yi
t)

2
. NDE evaluates the performance

of the algorithm for predicting the energy consumption
at each time step. Accuracy is defined as [5], Acc =

1 −
∑

T
t=1

∑g

i=1
|ŷi

t−yi
t|

2
∑

T
t=1

∑g

i=1
yi
t

. The accuracy metric estimates the
performance of the algorithm in all of the end-uses at all
time steps.

2) Selection of informative variables for disaggregation:
The information based metric (mutual information) is pre-
sented to select the most useful variables for disaggregation.
A case study is shown here to analyze the relationship
between mutual information metric and the disaggregation
performance (RMSE for an end-use is used here). The
metered and sub-metered data in 12 months of a home is
used. For each month, two variables (WBE plus another one
–ODT, IDT, WST, MVG, or ToD) are applied to disaggregate
the end-use (in this case, APPL is shown as an example)
with the same training and testing scheme. The RMSE and
mutual information are plotted in Fig. 4, where the Pearson
correlation coefficient between them is -0.88 and p-value
is 1.8 × 10−20. It is therefore concluded that the mutual
information metric is negative relative to the disaggregation
error (RMSE), which means that applying the variable with
higher mutual information of the pattern (from the measured
variable to the end-use) will achieve better performance in
disaggregation.
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Fig. 4. Relationship between mutual information of the pattern
(WBE+?→end-use) and the disaggregation performance. Each point rep-
resents a testing case using WBE plus another variable (ODT, IDT, WST,
MVG, or ToD)) to predict the end-use (APPL is shown here). The same
training and testing scheme is applied in all 12 months’ data of the same
home.

3) Disaggregation performance with the number of used
variables in STPN scheme: With mutual information metric
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to select the next measurement for disaggregation, com-
parisons are carried out between the performance and the
number of the variables. The results are shown in Fig. 5,
where the HVAC is disaggregated during Mar. 2013. The
used variables and the disaggregation performance are listed
in Table I.

It can be seen that the disaggregation error decreases with
the increasing number variables used. Note that, MVG and
ToD are the variables generated without the requirement of
additional sensors. In this context, the proposed STPN frame-
work provides us the privilege of improving disaggregation
without the requirement of new measurement.
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Fig. 5. The disaggregation performance increases with the number of used
variables. The HVAC disaggregation of Mar. 22-28, 2013 is shown on the
left panel with two methods (PFSA–only WBE is applied, and STPN(4-
var)–four variables are used). The absolute errors of the four approaches
are shown in the right panel where the used variables increase from one to
four.

TABLE I

PERFORMANCE OF STPN WITH INCREASING NUMBER OF VARIABLES

USED.

Method Variables RMSE AE NDE
PFSA WBE 0.2971 0.0370 0.0691

STPN (2-var) WBE, MVG 0.2139 0.0015 0.0358
STPN (3-var) WBE, MVG, IDT 0.0896 0.0018 0.0063
STPN (4-var) WBE, MVG, IDT, ToD 0.0441 0.0017 0.0015

4) Comparisons to FHMM and CO: The comparisons of
the STPN to FHMM and CO are illustrated using the data
in Jun. 2013. The disaggregation results and ground truth
are shown in Fig. 6. The STPN results are obtained using 3
variables.

It should be noted that, as NILMTK only applies three
states for most of the test cases here, the actual disaggre-
gation results don’t reflect the true values of the end-uses
well. However, the four types of end-uses are combinations
of several appliances, the power usage is more than on/off
status. This implies that STPN should get better performance
in terms of using more states.

FHMM and CO capture the profiles of energy consump-
tion in some appliances (e.g., Fig. 6 (a)–APPL and (b)–

HVAC). However, there are considerable errors in the dis-
aggregation, even only looking at the on/off status. From
the plots of PFSA (e.g., the third panels of (a) and (d) in
Fig. 6), PFSA can capture the on/off status, and the actual
values are finer than FHMM and CO, although there are mis-
disaggregation in quite a few cases. When applying more
variables by STPN, the on/off status is well captured as
well as the actual values. For the performance, the results
of RMSE, AE, NDE, and accuracy are listed in Table II. For
home 1, PFSA is better than FHMM and CO, while FHMM
gets higher accuracy in home 2 than PFSA and CO. In both
homes, STPN outperforms FHMM and CO.
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Fig. 6. Disaggregation results using FHMM, CO, PFSA, and STPN using
data in Jun. 2013 at home 1.

TABLE II

PERFORMANCE OF PFSA AND STPN WITH COMPARISON TO FHMM

AND CO.

ID FHMM CO PFSA STPN
1/APPL 0.14/0.58/1.17 0.13/0.15/1.04 0.13/0.41/0.96 0.02/0.05/0.03
1/HVAC 0.10/1.00/1.00 0.10/1.00/1.00 0.10/0.92/0.95 0.01/0.01/0.01
1/LIGHTS 0.02/0.06/0.73 0.02/1.00/1.00 0.02/0.60/0.83 0.02/0.37/0.54
1/MELS 0.06/0.07/0.26 0.08/0.09/0.37 0.06/0.11/0.20 0.03/0.06/0.05
1/Acc 0.63 0.58 0.68 0.90
2/APPL 0.16/0.04/0.46 0.24/0.04/0.99 0.35/1.19/2.11 0.04/0.03/0.03
2/HVAC 0.18/0.13/0.19 0.24/0.08/0.36 0.29/0.63/0.50 0.03/0.01/0.01
2/LIGHTS 0.06/0.55/1.31 0.10/2.17/3.79 0.06/0.75/1.14 0.03/0.06/0.39
2/MELS 0.13/0.12/0.13 0.23/0.58/0.42 0.11/0.13/0.09 0.04/0.004/0.01
2/Acc 0.81 0.60 0.68 0.95
*The values of the three metrics (RMSE/AE/NDE) are listed respectively.
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5. CONCLUSIONS

This work presented a spatiotemporal pattern network
(STPN) framework to utilize multivariate time-series data for
non-intrusive load monitoring (NILM). The proposed STPN
framework is capable of (i) using diverse types of data,
(ii) discovering specific patterns of energy usage/generation
in phasor measurements, and (iii) energy disaggregation
using whole building electric (WBE) consumption and other
available concurrent information (e.g., indoor/outdoor tem-
perature, time of day, and move average of WBE).

Future work will pursue: (i) gathering more building and
appliance information (RBSAM data set) to enhance the
similarity confidence between homes and (ii) cluster analysis
in a residential area with the purpose of minimizing the
installment cost and maximizing the disaggregation perfor-
mance.
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