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Abstract— In this work, we investigate data-driven sensor
scheduling policies under resource constraints. We consider a
scenario in which data is being generated by n discrete-time
dynamical processes. At each instant, m < n measurements
can be collected. Based on an auto-regressive (AR) prediction
model, we define two loss functions, namely, the prediction
error and the measurement error associated with the missing
measurements. The problem of choosing the measurements at
each step is formulated as an optimization problem over the
two loss functions. For n = 2 and m = 1, we explicitly derive
the optimal measurement policy, and present an analytical
expression for the decision rule. We extend the technique
adopted in the aforementioned problem to derive an algorithmic
procedure to address the case when m and n are arbitrary.
We present simulations to illustrate the performance of the
proposed algorithm, and compare it to the case when the
parameters of the AR predictor are updated at each step based
on the measurements.

I. INTRODUCTION

Modern sensor networks are plagued with the problem of
data deluge [1]. In order to circumvent the aforementioned
challenge, techniques are being developed to enable sensors
to capture the salient features of the underlying spatio-
temporal phenomenon. Techniques from different disciplines,
for example, sequential experimental design [2], active sens-
ing [3], adaptive sensing/sampling [4], sensor scheduling [5]
or controlled sensing [6] enable such smart data collection
procedures. In this paper, we investigate the problem of
minimizing the overall prediction error for several time-series
data when there is a constraint on the maximum number
of measurements that can be collected at each step. Such
problems often arise in mobile sensor networks when the
number of sensors are not sufficient to cover the entire
observation field.

Our paper is closely related to the area of controlled
sensing. In controlled sensing, the final goal is to develop
a decision policy to take observations in order to infer
accurately the state of the system or forecast the future
state of the system [6]. In contrast to classical control
systems, where the control primarily affects the states of the
system, in controlled sensing, the control affects only the
observations. In case of a mobile sensor network, controlled
sensing can be used to develop sensor routing policies. For
a static sensor network, it can be used to develop sensor
activation and scheduling policies. Sensor scheduling arises
when multiple sensors that provide information with different
relevance/quality and observation costs are present or when
a single sensor can be operated in multiple modes. Sensor
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scheduling is used in several applications, for example,
surveillance [7], target tracking [8], coverage [9], to name
a few. An extensive survey of several sensor scheduling
policies is provided in [10].

In the past, there has been some work that addresses
scheduling in linear spatially distributed systems [11]. Solv-
ing these problems leads to a deterministic optimal control
because the evolution of the covariance is deterministic.
Consequently, the evolution of information metric, which
typically depends on the covariance, given a sequence of con-
trols is also deterministic. These problems can be solved on-
line by using Model Predictive Control (MPC) [11]. However
in nonlinear dynamical systems, MPC is not very efficient
because it results in a Stochastic Dynamic Programming
(SDP) which is computationally expensive.

The optimal sensor scheduling problem can be consid-
ered as a Partially Observed Markov Decision Process
(POMDP) [12]. Such problems are difficult to solve in
general, and solution techniques are efficient for small input
sizes. In [13], authors consider a sensor scheduling problem
as a POMDP on the Information State (I-state), and provide
an on-line receding horizon approach to solution of POMDP.
This method results in reducing the variance of the gradient
estimates. However this method leads to suboptimal solution
because of the non-convex structure. [14] modifies an on-line
receding horizon approach to the case of multiple sensing.
In [9], authors propose an algorithm to estimate a process,
based on the idea of optimizing the expected steady state
performance when sensors switch randomly according to
some optimal probability distribution. In [9], [7], selection
of sensors are based on transition probabilities described
by Markov process. In [15], authors consider a sequential
estimation problem with two agents, one of which is an
estimator and the other one is an observer. They propose
a scheduling policy for coordination between these agents to
minimize the estimation error. In [2], authors consider the
problem of sensor selection for binary sequential hypothesis
testing with multiple sensors in which at every time step, one
out of multiple sensors is selected to take an observation.
In [8], the authors examine the problem of target tracking
subject to limited system resources from a sensor scheduling
perspective.

The observation control policy can either be open
loop [16], [17], [18], which is fixed and determined a priori,
or closed loop policy [19], [20], [6], [21], [5], in which case
the previous observations affect the current decision. In this
paper, our focus is on temporal observation control in which
the control at each time is closed loop.

In general, the notion of optimality is asymptotic in sensor



scheduling problems, i.e, the number of observations are
infinite almost surely [5], [20], [21]. In [5], authors pose
an online sensor selection problem as an infinite horizon
dynamic program, and provide non-asymptotic optimal strat-
egy when the average number of observations is finite. In
contrast, we consider a myopic/greedy strategy for sensor
selection in which a one-step look-ahead policy is adopted
to minimize the loss function. This leads to computationally
feasible sensor scheduling strategies which can be imple-
mented in practical scenarios involving autonomous mobile
sensor platforms which have severe constraints in terms of
the communication and computation.

In this work, we consider two different objective functions
that model the error in measurement and prediction due to
missing measurements. An intrinsic feature of time series
is that adjacent observations are dependent. Therefore, loss
functions can be computed in terms of the parameters of
the time series, and previous observations. Consequently, the
set of sensors that need to be activated can be determined
efficiently. We show that our approach is computationally
efficient. The organization of the paper is as follows. In
Section II, we present the problem formulation. In section
III, we present the optimal policy for the loss functions, and
derive an explicit decision rule for two time series. In section
IV, we simulate the proposed approach. Finally, Section V
presents our conclusion and avenues for future research.

II. PROBLEM STATEMENT

Consider a network of n static sensors S = {S1, . . . , Sn}
connected to a fusion center F . Each sensor is capable of
measuring samples generated by a discrete-time exogenous
process. Let Yi = {Yi,k} denote the discrete-time random
process that models the exogenous process generating the
data at sensor Si, where Yi,k is a random variable. Let
yi,k denote the realization of the random variable Yi,k. We
assume that Yi is a weakly stationary process with mean µi,
and the jth autocovariance γi,j . Let ui,k ∈ {0, 1} represent
the possible actions of Si at step k. If ui,k = 1, then Si takes
a measurement (i.e., yi,k), and transmits it to F . If ui,k = 0,
then Si does not take any measurement, and hence there is
no transmission to F .

We assume that F uses a predictor for the following
purposes: (i) To substitute for the missing data from the
sensors (ii) To predict for the future value of the samples. In
this paper, we investigate the scenario when the predictor is
a pth autoregressive model (denoted as AR(p)), and satisfies
the following equation:

Ŷi,k = ci + φi,1Yi,k−1 + · · ·+ φi,pYi,k−p + εi,k, (1)
= bi.[1, Yi,k−1, . . . , Yi,k−p]

T + εi,k,

where bi = [ci, φi,1, . . . , φi,p]
T , and εi,k is a white noise

sequence which satisfies E[εi,k] = 0, E[ε2i,k] = σ2
i , and

E[εi,kεi,k+k′ ] = 0 for all k′ 6= 0. In AR(p) model, mean

value and covariance of time series are given as follows [22]:

µi =
ci

1− φi,1 − · · · − φi,p
, (2)

γi,j =

{
φi,1γi,j−1 + · · ·+ φi,pγi,j−p j = 1, 2, ...
φi,1γi,1 + · · ·+ φi,pγi,p + σ2

i j = 0
.

b can be computed by a least squared regression which leads
to the following form [22],

bi = (

T−1∑
k=p+1

yi,k
Tyi,k)

−1(

T−1∑
k=p+1

yi,k
T yi,k), (3)

where yi,k is a row vector, defined as [1, yi,k−1, . . . , yi,k−p],
and T represents a pre-determined time-horizon over which
the data is collected.

Based on the data collected till step k, F sends an
activation signal to m < n sensors at the next step k+1 (i.e.,∑n
i=1 ui,k+1 = m). The choice of sensors at the next step

is based on minimizing a cost function that models the error
incurred in the estimation of missing data, and prediction of
the future data. Next, we provide an elaborate description of
the cost functions considered in this paper.

A. Prediction Error

Let M(k) be an index set containing the indices of the
sensors that are active at time k (i.e. |M(k)| = m). The
objective is to formulate a cost function that models the
error in predicting the samples at round k + 1 due to
measurement constraints at step k. In order to minimize the
aforementioned cost, F needs to compute M(k) at stage
k − 1 based on the data received from the sensors till stage
k−1. Let N = {1, . . . , n}. The following equation provides
an expression for the mean square prediction error at step
k + 1:

f(b, σ, y) = E[
∑

i∈M(k)

(Yi,k+1 − Ŷi,k+1)
2 (4)

+
∑

i∈N\M(k)

(Yi,k+1 − Ŷi,k+1)
2],

where b, σ, y are concatenation of bi,σi ,and yi,k for i =
1, . . . , n, respectively. The first summation in (4) represents
the prediction error for sensors in M(k), in which Ŷi,k+1

can be written in terms of Yi,k which is a random variable
with mean and covariance expressed in (2). The second
summation represents the prediction error for inactive sensors
at stage k−1. Note that Ŷi,k+1 in second summation is also a
random variable due to noise in prediction model. Therefore,
the loss function can be written as

f = E[
∑

i∈M(t)

(Y it+1 − Ŷi,k+1︸ ︷︷ ︸
bi.[1,Yi,k,...,Yi,k−p+1]T+εi,k+1

)2

+
∑

i∈N\M(t)

(Y it+1 − Ŷi,k+1)
2]. (5)



B. Measurement error

The objective here is to model the error incurred from
missing samples at the next stage due to measurement
constraints. The following cost function provides the mean
square measurement error:

f(b, σ, y) = E[
∑

i∈N\M(k)

(Yi,k − Ŷi,k)2], (6)

where Ŷi,t is obtained from the predictor.
The objective of the fusion center is to arrive at a sensor

activation scheme at each stage k which minimizes the above
loss functions. This leads to the following problem:

Compute M(k)∗ = arg min
M(k)

f(b, σ, y) (7)

III. 1-STEP OPTIMAL POLICY

In this section, we initially consider the problem of optimal
temporal sampling for minimizing the prediction error. First,
we develop a decision policy for n = 2 and p = 1, and
subsequently, the general case is analyzed. Next, we consider
the measurement error.

A. Prediction error

(n = 2,m = 1): In this case, we compute the loss function
for the scenario in which measurements are acquired for
only one time series at each step. Let f1 and f2 denote the
loss functions when u1,k = 1 and u2,k = 1, respectively.
Moreover, only one of the sensors was active before stage k.
Without loss of generality, assume that u1,k−1 = 1, which
implies that u2,k−1 = 0. If u2,k−2 = 1, then loss functions
can be written in the following form

f1 = g1(σ
2
1) + g3(c2, φ2, σ

2
2 , y2,k−2),

f2 = g2(c1, φ1, σ
2
1 , y1,k−1) + g1(σ

2
2),

where

g1(σ
2
i ) = 2σ2

i ,

g2(bi, σ
2
i , yi,k−1) = φ4i (

ci
φi − 1

+ yi,k−1)
2 + σ2

i

φ4i − 2

φ2i − 1

g3(bi, σ
2
i , yi,k−2) = φ6i (

ci
φi − 1

+ yi,k−1)
2 + σ2

i

φ6i − 2

φ2i − 1

We can determine a decision rule in the space of
y1,k−1, y2,k−1 based on the sign of f1 − f2. In other words,
f1−f2 = 0 specifies the curve in the space of y1,k−1, y2,k−1
that separates the set of values of (y1,k−1, y2,k−1) for which
u1,k = 1 from the set of values of (y1,k−1, y2,k−1) for which
u2,k = 1. We call the aforementioned curve as the separator.
In this case, the separator is a hyperbola with the following
equation:

− φ41(y1,k−1 −
c1

1− φ1
)2 + φ62(y2,k−2 −

c2
1− φ2

)2

= −φ
2
1σ

2
1(φ

2
1 − 2)

1− φ21
+
φ22σ

2
2(φ

4
2 − 2)

1− φ22
. (8)
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Fig. 1: Separator

Next, assume that u1,k−1 = 1 and u1,k−2 = 1. Therefore,
u2,k−1 = 0 and u2,k−2 = 0 which leads to the following:

f1 = g1(σ
2
1) + g4(σ

2
2 , φ2)

f2 = g2(c1, φ1, σ
2
1 , y1,k−2) + g1(σ

2
2),

where

g4(σ
2
2 , φ2) = 2σ2

2(φ
2
2 + 1). (9)

In this case, comparing f1, f2 results in the following sepa-
rator

φ41(y1,k−1 −
c1

1− φ1
)2 =

φ21σ
2
1(φ

2
1 − 2)

1− φ21
+ 2σ2

2φ2. (10)

Right hand side of the above equation can be evaluated
for different values of φ1, φ2 and σ2

1

σ2
2

. Figure 1, shows the
surface that separates the positive and negative values of the
right hand side of (10). When this expression is negative, it
implies that u1,k = 1. On the other hand, for positive values,
there is a threshold policy to determine the next active sensor.
By threshold policy we mean For instance, if y1,k−1 lies in
the following interval, then u2,k = 1

−D ≤ (y1,k−1 −
c1

1− φ1
) ≤ D

D =
1

φ21

√
(
φ21σ

2
1(φ

2
1 − 2)

1− φ21
+ 2σ2

2φ2)

(n > 2,m = 1): In this case, we assume that at each stage
only one measurement is taken. Let l1, l2 denote the index
of time series in which ul1,k−1 = 1, ul2,k−2 = 1, and l =
M(k). For the case l1 = l2 6= l, the loss function can be
formulated as follows:

fl = g1(σ
2
l ) + g2(cl1 , φl1 , σ

2
l1 , yl1,k−1) +

∑
N\{l,l1}

g4(σ
2
i , φi),

and, when l1 = l2 = l, we obtain the following:

fl = g1(σ
2
l ) +

∑
i∈N\{l}

g4(σ
2
i , φi).

For the case l1 6= l2, we obtain the following:

fl = g1(σ
2
l ) + g2(cl1 , φl1 , σ

2
l1 , yl1,k−1)

+g3(cl2 , φl2 , σ
2
l2 , yl2,k−2) +

∑
i∈N\{l,l1,l2}

g4(σ
2
i , φi).



Comparing any two pairs of fl and fl′ for l, l′ ∈
N leads to the decision rule which is either hyperbola
or threshold policy, explained in the previous subsection.
General Case(n > m): In this case, we assume that m
measurements are collected at each step. There exists

(
n
m

)
loss functions associated to sampling from n time series. The
loss function is given by the following expression:

f =
∑

i∈M(k)

g1(σ
2
i ) +

∑
i∈M1(k)

g2(ci, φi, σ
2
i , yi,k−1)

+
∑

i∈M2(k)

g3(ci, φi, σ
2
i , yi,k−2) +

∑
i∈M3(k)

g4(σ
2
i , φi),

where M(k) is the set of active sensors at time step k, and
M1,M2,M3 are defined as

1) M1(k): M(k − 1) \M(k).
2) M2(k): M(k − 2) \ (M1(k) ∪M(k)).
3) M3(k): N \M2(k).

In order to determine the optimal ui,k, we need to compare(
n
m

)
loss functions. Since all terms in the loss function are

disjoint, we can reduce the number of cases to n. Let Li
denote a term in the loss function corresponding to ith time
series, when ui,k = 0. Therefore, the loss function can be
written in the following form:

f =
∑

i∈M(k)

g1(σ
2
i ) +

∑
i∈N\M(k)

Li.

By adding and subtracting
∑
i∈M Li, f can be written in

the following form:

f =
∑

i∈M(k)

(g1(σ
2
i )− Li) +

∑
i∈N

Li.

Since the second term in the above equation is constant,
minimizing the first term over all possible sets of M(k)
is equivalent to minimizing the loss function. Moreover,
the first term contains sum of m disjoint terms. Therefore,
it is equivalent to finding the m lowest values of hi =
g1(σ

2
i ) − Li among n time series. In other words, fusion

center F computes hi for i ∈ N , and put ui,k = 1 for the
corresponding indices of m lowest values, and M(k) is the
set of indices for which ui,k = 1.

B. Measurement Error

In this case, we define the loss function as the mean square
prediction error for the missing measurements i,e., series for
which ui,k = 0. Therefore, f has the following form:

f = E[
∑

i∈N\M

(Yi,k − Ŷi,k)2]. (11)

Substituting Ŷi,k by AR(1) model leads to the following:

f =
∑
i∈M1

q1(ci, φi, σ
2
i , yi,k−1) (12)

+
∑
i∈M2

q2(ci, φi, σ
2
i , yi,k−2) +

∑
i∈M3

q3(ci, φi),

where M1,M2,M3 are defined in previous section, and
q1, q2 and q3 are defined as follows:

q1 = φ2i (
ci

φi − 1
+ yi,k−1)

2 + σ2
i

φ2i − 2

φ2i − 1
, (13)

q2 = φ4i (
ci

φi − 1
+ yi,k−2)

2 + σ2
i

φ4i − 2

φ2i − 1
,

q3 = 2σ2
i .

Since the approach is the same as previous loss function,
we only present the general case for n,m.

General Case (n,m): There are
(
n
m

)
loss functions as-

sociated with sampling m time series. The loss function is
given by the following expression:

f =
∑
i∈M1

q1(ci, φi, σ
2
i , yi,k−1)

+
∑
i∈M2

q2(ci, φi, σ
2
i , yi,k−2) +

∑
i∈M3

q3(σ
2
i ),

In order to find the most informative time series,
(
n
m

)
loss

functions need to be compared. However, we can reduce the
number of cases to n since all terms are disjoint. f can
be written in the following form by defining Li as the loss
function associated with the ith time series when ui,k = 0

f =
∑

i∈N\M

Li.

Minimizing the above function over all possible composition
of M is equivalent to finding n−m lowest values of Li for
i ∈ N .

IV. SIMULATION

In this section, the simulation results for the proposed
algorithms are presented. In all the simulations, we use the
realization of auto regressive model. We assume that all time
series are initially observed for some time to compute the
parameters of the prediction model based on (3).

In our first simulation, we consider the case when n =
2,m = 1. We assume that Y1 and Y2 are initially observed
for 20 steps. Our goal is to determine the active sensors
for the next steps. In Figure 2a and 2b, the prediction error
is considered as the loss function, and we use AR(1) as
our prediction model. Active sensors can be determined by
examining the location y1,k−1, y2,k−2 respect to the hyper-
bola (8), described in the previous sections. In Figure 2a,
the informative time series is marked with a circle for next
5 steps. The decision policy and the data are depicted in
Figure 2b in different steps. In Figure 3a and 3b, we consider
the measurement loss function.

In the second simulation, we consider the 4th order AR
model as prediction model in our loss functions. Figure 4a
depicts the results for n = 2. Both time series are initially
observed for 50 steps for estimating the parameters in the
prediction model. Next, we pick the informative sample
points for next 50 steps. Note that in this simulation we
used the initial parameters (i.e. bi) which are estimated from
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Fig. 3: (a) Informative samples in two time series. Mea-
surement loss function, and prediction model is AR(1). (b)
Decision policy for different steps

the first 50 steps of the time series. We can also update bi
according to the current observed data. We call this scenario
as learning parameters. We expect that the loss function after
incorporating parameter learning should be lower. Figure 5a
depicts the loss functions for learning vs non-learning sce-
narios (prediction error loss function, measurement error loss
function). This implies that prediction and measurements are
more close to each other.

Based on the simulation results, we propose the follow-
ing hypothesis: For two series with close parameters, the
dominant terms are the variances of white noises included
in the time series (i.e σ2

1 , σ
2
2). This implies that when σ1

is big enough compared to σ2, one only needs to measure
Y1. On the other hand, when σ2 > σ1, the policy is reversed.
From simulations, we observe that when the |σ1−σ2| > 0.1,
active sensors can be determined based on only σ1 and σ2. In
other words, when σ1 − σ2 > 0.1, then u1,k = 1, and when
σ2 − σ1 > 0.1, then u2,k = 1. Figure 6 shows three regions
in the space of σ1, σ2. In the white region, the decision
policy is only based on the value of σ1, σ2, and in the green
region it depends on σ1, σ2, b1, b2. In other words, when the
uncertainty is high, prediction is less accurate. Thus the loss
function is larger. As the noise level in the time series is
increased, the loss function increases. Figures 7b and 7a
show the variation of the loss function for several σ1 and σ2
for different values of p.

Next, we simulate the case n = 8 and m = 3 for the
prediction error loss function. At each step, we compute the
smallest three hi’s among all time series. Figure 8 shows the
informative time series at each step with a circle.
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Fig. 4: (a) Informative samples in two time series. Prediction
error loss function, and prediction model is AR(4). (b)
Measurement loss function, and prediction model is AR(4).
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Fig. 8: Multiple Time Series (8,3)

V. CONCLUSION

In this work, a data-driven sensor scheduling technique is
proposed to collect the data from n discrete-time dynami-
cal processes. Based on an auto-regressive (AR) prediction
model, we defined two loss functions, namely, the prediction
error and the measurement error associated with the missing
measurements. The problem of choosing the measurements
at each step is formulated as an optimization problem over
the two loss functions. Moreover, we derived the optimal
measurement policy for the case of n = 2,m = 1. We
presented simulations to illustrate the performance of the
proposed algorithm, and compare it to the case when the
parameters of the AR predictor are updated at each step based
on the measurements.

An ongoing effort in our research is to investigate other
prediction models which results in computationally efficient
optimization problem. Moreover, we are interested in the
case when time series are not independent, and using this
property in the loss functions to select next measurements.
This problem may provide solution for the sensor scheduling
problem for the spatio-temporal phenomenon.
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